Iris Image Blur Detection with Multiple Kernel Learning
نویسندگان
چکیده
منابع مشابه
Multiple Kernel Learning for Image Contour Extraction
Nowadays, it rapidly increases that digital image information that stored locally or on internet, it has been an important issue that how to save and retrieve images in an effective way. Traditional manual classification can’t meet the actual needs. Now the method commonly used is to extract the image contour, it does not use the full image to deal with the image effectively. Currently, the eff...
متن کاملOn Multiple Kernel Learning with Multiple Labels
For classification with multiple labels, a common approach is to learn a classifier for each label. With a kernel-based classifier, there are two options to set up kernels: select a specific kernel for each label or the same kernel for all labels. In this work, we present a unified framework for multi-label multiple kernel learning, in which the above two approaches can be considered as two ext...
متن کاملSparse Representation of a Blur Kernel for Blind Image Restoration
Blind image restoration is a non-convex problem which involves restoration of images from an unknown blur kernel. The factors affecting the performance of this restoration are how much prior information about an image and a blur kernel are provided and what algorithm is used to perform the restoration task. Prior information on images is often employed to restore the sharpness of the edges of a...
متن کاملMultiple Similarities Based Kernel Subspace Learning for Image Classification
In this paper, we propose a new method for image classification, in which matrix based kernel features are designed to capture the multiple similarities between images in different low-level visual cues. Based on the property that dot product kernel can be regarded as a similarity measure, we apply kernel functions to different low-level visual features respectively to measure the similarities ...
متن کاملMultiple Kernel and Multi-label Learning for Image Categorization
MULTIPLE KERNEL AND MULTI-LABEL LEARNING FOR IMAGE CATEGORIZATION By Serhat Selçuk Bucak One crucial step in recovering useful information from large image collections is image categorization. The goal of image categorization is to find the relevant labels for a given image from a closed set of labels. Despite the huge interest and significant contributions by the research community, there rema...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEICE Transactions on Information and Systems
سال: 2012
ISSN: 0916-8532,1745-1361
DOI: 10.1587/transinf.e95.d.1698